Deep dive

Brad Harrison, Principal Market Analyst

ElectraNet

electranet.com.au

Deep dive

- A short recap on the public forum
- Addressing themes from feedback received to date
- Questions from the floor

-

ElectraNet

electranet.com.au

Options

Option	Description	Capital Cost (\$2018 billion)
Option A	Non-interconnector ¹	\$0.13 p.a.
Option B	QId HVDC	\$1.8
Option C1	NSW HVDC	\$0.8
Option C2	NSW 275 kV	\$1.0
Option C3	NSW 330 kV via Buronga	\$1.4
Option C3i	C3 + series compensation	\$1.5 (NPV ~\$0.9)
Option C4	NSW 330 kV Buronga by pass	\$1.3
Option C5	NSW 500 kV	\$2.9
Option D1	Victoria 275 kV	\$1.2
Option D1i	D1 + series compensation	\$1.2

Scenarios

Variable	High	Central	Low
Weighting	25%	50%	25%
Electricity demand (including impact from distributed energy resources)	AEMO 2018 EFI strong demand forecasts plus potential SA mining load development of 345 MW	AEMO 2018 EFI Neutral demand forecasts	AEMO 2018 EFI Weak demand forecasts
Gas prices – long term	\$11.87 GJ in Adelaide (\$1.68/GJ higher than the	\$ 8.40/GJ (AEMO 2017 GSOO Neutral	\$7.40/GJ
	AEMO ISP strong forecast)	forecast; \$0.77 lower than AEMO ISP Neutral forecast)	AEMO ISP weak forecast)
Emission reduction renewables policy – in	Emissions reduction around 45% from 2005 by 2030	Emissions reduction around 28% from 2005 by 2030	No explicit emission reduction beyond current RET
addition to Renewable Energy Target (RET)	(Federal opposition policy)	(Federal Government policy)	
Jurisdictional emissions targets	VRET 25% by 2020 and 40% by 2025	VRET 25% by 2020 and 40% by 2025	VRET 25% by 2020 and 40% by 2025
	QRET 50% by 2030	QRET 50% by 2030	QRET 50% by 2030
SA inertia requirement – RoCoF limit for non-	1 Hz/s (International standard)	3 Hz/s (current SA Government requirement)	3 Hz/s (current SA Government requirement)
credible loss of Heywood Interconnector	,		
Capital costs	15% higher than central scenario	AEMO 2016 NTNDP with some updates from 2018 ISP .	15% lower than central scenario

Weighted benefits

Weighted (Central 50%, Low 25%, High 25%)

Preferred option – benefit category by scenario

Central scenario – gross market benefits

- Avoided voluntary load curtailment
- Network CAPEX deferral

- Avoided unserved energy
- Generator and storage capex deferral

Preferred option – central time series

Preferred option benefit categories (weighted)

ElectraNet

Feedback themes

ElectraNet

. .

electranet.com.au

Themes

- 1. Gas market interaction
- 2. Transmission deferral benefits
- 3. System strength considerations
- 4. Non-interconnector options
- 5. Spotlight on Queensland option

1. Why is the gas price so important?

- SA's dispatchable fleet is dominated by gas generators
- RoCoF* constraint on Heywood Interconnector.
 - Interconnector limits are now influenced by gas generators (not just flows)
- Gas prices have increased
- Submissions advised testing a wide range of prices
 We centered on AEMO's neutral forecast
- Energy Quest advice informed the gas price floor
- We tested AEMO's ISP scenario "Increased Role for Gas"

* Rate of Change of Frequency

1. Gas prices – delivered to Torrens Island

2. Transmission deferral benefits

- RIT-T class of market benefit: "differences in timing of transmission investment"
 - □ Reduced capital expenditure on transmission investment otherwise required
- AEMO's Integrated System Plan and SAET interaction
 - □ Group 1: Western Victorian Renewable Integration RIT-T
 - □ Group 2: Medium Qld to NSW augmentation (378 MW)
 - □ Group 3: Renewable Energy Zones intra regional transmission development.
- Consistent with AER 2018 Draft RIT-T Guidelines

2. ISP and SAET interaction

- Group 1 Red
 - Western Victoria
 Renewable
 Integration RIT-T
- Group 2 Green
 - SA NSW interconnector
 - Medium QNI
 Upgrade
- Group 3 Blue
 - REZ Benefits

3. System strength

Current arrangement

□ Synchronous floor and low non-synchronous cap

AEMO constrain on or direct synchronous generators to meet the minimum system strength requirement

If the synchronous floor is met <u>but not</u> exceeded, a **low** cap is applied to non-synchronous generators

□ High non-synchronous cap

If the synchronous floor is exceeded, a high cap is applied to non-synchronous generators

Assumed base case

- □ High non-synchronous cap
- 2,400 MWs of inertia is provided by synchronous condensers influences Heywood Interconnector limits.

3. System strength

- Current direction arrangements costing ~ \$50 \$60 million p.a.
- Separate solution to be delivered ASAP to address synchronous floor only

4. Non-interconnector option

- SAET Supplementary information paper
- Describes minimum and preferred system targets
 - 'grid scale' solutions to meet the identified need
- ElectraNet tested the benefits of many non-network combinations
- Entura advised on an optimized solution and assessed performance against the minimum and preferred system target

ElectraNet

South Australian Energy Transformation

PSCR Supplementary Information Paper

13 February 2017

4. Non-interconnector option

SAET total PV cost ~ \$1.1B

The solution and publicly available information on capital costs >\$1.5B

150 MW Solar thermal ~ \$750m

Renew Economy 9 May 2018

- 225 MW Pumped hydro ~ \$410m
 Guardian Australia 8 February 2018
- 2 * 150 MW battery ~ \$375M

AEMO ISP assumptions ~ \$1.25m / MW

Network support agreement

No publicly available equivalent

5. Spotlight on Queensland option

- Capital Cost \$1.79 B
- Capacity 750 MW in both directions
- Assumed to fully alleviate RoCoF in South Australia
 - Equivalent to AC options
- Cost benefit comparison HVDC vs AC solution (\$273 million total)
 - □ Phase shifting transformers (\$85 million)
 - □ Series compensation (\$46 million)
 - □ Synchronous condensers (NSW) (\$54 million)
 - □ SVC (\$54 million)
 - □ Capacitors and reactors (\$33.4 million)
- REZ 12 Broken Hill
 - Build limit 100 MW
 - □ Penalty cost \$660,000 per MW

Questions

ElectraNet

electranet.com.au