

SOUTH AUSTRALIA - DALRYMPLE BATTERY ENERGY STORAGE SYSTEM

South Australia - Dalrymple Battery Energy Storage System Dorin Costan - ElectraNet

SOUTH AUSTRALIAN NETWORK

Dorin Costan - ElectraNet

1

LL LLip Igre

- Substantial increase in renewable generation in SA
- Deployment of:
 - Large scale wind generation;
 - Large scale photovoltaic generation; and
 - Rooftop solar photovoltaic installations.
- Conventional generation:
 - Entire coal based generation fleet retired; and
 - Gas based generators operating at reduced capacity.
- Changing energy supply mix challenges:
 - Affordability;
 - Reliability; and
 - Security of supply.

SA SYSTEM REQUIREMENTS

- Safe, secure and reliable operation of SA system both for:
 - Connected; and
 - Islanded conditions.
- Solutions:
 - Network (conventional); and
 - Non-network / non-conventional.
- System security aspects:
 - Inertia including provision of synthetic inertia;
 - System strength;
 - Frequency control (both contingent and regulation); and
 - Voltage control.

DALRYMPLE BESS

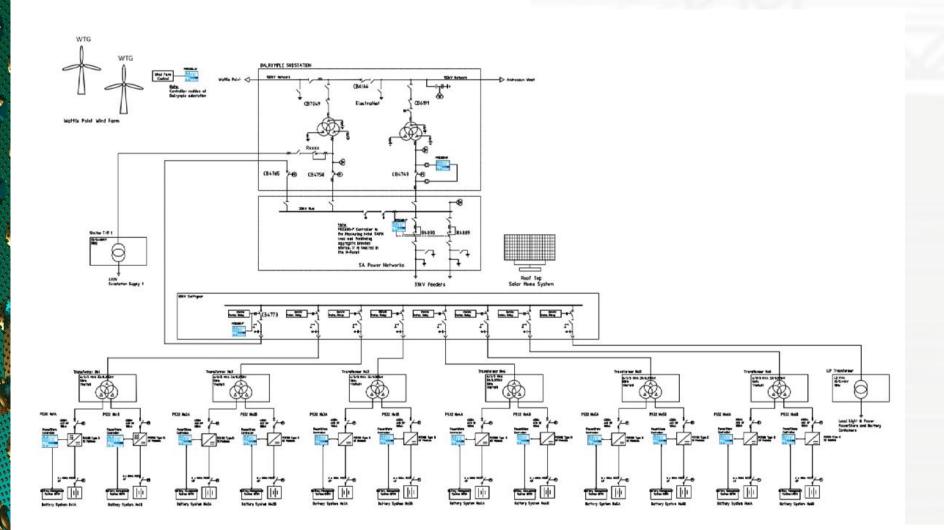
- Proof-of-concept demonstration project capable of delivering both regulated and non-regulated services
- Dalrymple BESS option for:
 - Increasing system security; and
 - Integration of renewables.
- 30 MW, 8 MWh ⇔ power BESS
- Connected to ElectraNet's existing Dalrymple substation in the Yorke Peninsula of SA
- Funding:
 - Australian Renewable Energy Agency (ARENA) grant;
 - ElectraNet (regulated services) owner;
 - AGL (BESS leasing non-regulated services) operator.

DALRYMPLE BESS OBJECTIVES

- Primary demonstrate that utility scale BESS systems can provide:
 - Network reliability and security services (e.g. FFR);
 - Market services; and
 - "Seamless" islanded operation with 100% renewable generation following transmission outages.
 - evaluate the operation of a local islanded system where:
 - demand is supplied by a local wind farm;
 - with no conventional generation; and
 - with regulation services being provided by the BESS.
- Secondary
 - demonstrate commercial separation and provision of regulated services and energy market services; and
 - build delivery capability for such assets.

DALRYMPLE BESS SERVICES

- BESS deployment at Dalrymple for provision of services:
 - Non-regulated:
 - Cap trading;
 - FCAS.
 - Regulated:
 - FFR;
 - Reactive / voltage support;
 - Network support integration in System Integrity Protection Scheme (SIPS);
 - Reduction in unserved energy (islanding support).


CONNECTION AND REGIONAL CONTEXT

- BESS connected to ElectraNet's Dalrymple Substation in the Yorke Peninsula
- Dalrymple substation at the end of radial line
- Local load rural, light industrial, max 8MW
- Increasing domestic rooftop PV
- Occasionally load can become negative
- 90 MW type 1 Wattle Point Wind Farm (WPWF) connected to the Dalrymple substation
- Local network can be assimilated with a lower scale replica of the SA network – when compared with Australian network

SIMPLIFIED SLD

Dorin Costan - ElectraNet

"

ι.

CONNECTION AND EQUIPMENT

- Connection at 33kV level secondary side of 25MVA 132 / 33 kV Dalrymple transformer
- 33kV indoor switchgear
- 6 x 6MVA 33kV / 415 V dual secondaries transformers
- 32 ABB inverters PCS-100D voltage source
- Samsung batteries 12 x 3.117 MVA skid based PowerStore system units with a BoL design capacity of 14.4 MWh

PCS100 BESS MODULES

Dorin Costan - ElectraNet

11.

å.,

....

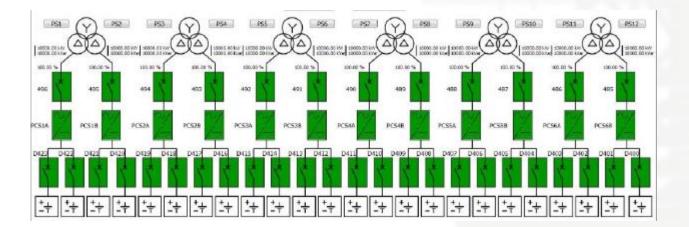
Nie.

Slide number

SYSTEM FUNCTIONALITY

- Form of reference frequency and voltage for an isolated or islanded grid segment
- Spinning Reserve functionality (Virtual Generator function)
- Ensure stability for network voltage and frequency
- Provide black start capability in the event of a network blackout
- Provide ancillary grid services with minimal operation intervention.
- Enable a Microgrid to transition from grid-connected to islanded operation and back to grid connected status
- Provide data monitoring and archiving.

• Light frame building, housing:


- Control room
- MV switchgear
- Inverters
- Batteries

"

Dorin Costan - ElectraNet

"

...

Nip.

Slide number

COMPLETED SITE

Dorin Costan - ElectraNet

11

11

LL LLP

Slide number

STANDALONE BUILDING VS CONTAINERS

- No perfect solution
- Containerised:
 - Modularity
 - Expandability

• Building:

- Smaller footprint
- Faster delivery and installation timeframes
- Depending on design: lower foundation, trenching and cabling costs
- Heat management hence potentially less air-conditioning
- Potentially Capex / Opex advantages
- Non-expandable, unless spare capacity designed-in

ISLAND DETECTION SCHEME (IDS)

- Local distribution company requirements:
 - no local customers to be worse-off / no degradation of services reliability as a result of BESS connection
 - Implementation of BESS anti-islanding capability
- BESS anti-islanding activation for:
 - Insufficient number of batteries / inverters online contribution under islanded condition; or
 - Islanding detection system in-operational
- Topology-based islanding system
 - Monitoring circuit breakers / disconnectors statuses at various substations (via auxiliary contacts) <> planned outages
 - Monitoring protection relays i.e. CB imminent tripping under fault conditions detected via protection relays (even before the CBs would open) and transmitting trip signals via telecommunication systems ⇔ unplanned outages
- Vector shift island system tried unsuccessfully due to variety of contingencies and inability to reliably detect / discriminate island vs networked condition

IDS IMPLEMENTATION

- Topology based system extending to 5 substations (Dalrymple, Ardrossan West, Hummocks, Bungama);
 - Respective substations all brownfield, with associated challenges in terms of documentation and accessibility for works;

IDS FUNCTIONS

- Upon detection of island IDS performs several functions:
 - Signal sent to BESS for synchronous to isochronous transition;
 - Signal sent to WPWF offloading of excess generation avoid overload of ElectraNet transformer from Dalrymple;
 - Relevant CBs at Dalrymple are switched off such that inadvertent reconnection to unsynchronised grid is prevented;
 - Changes Dalrymple AVR behaviour / control in islanded condition;
 - Modifies limits for local special protection scheme;
 - Performs controlled BESS re-synchronisation to the grid once adequate conditions occur.

MODELLING AND NETWORK STUDIES

- Models developed for:
 - Dalrymple local network
 - 132 kV network up to Waterloo and Snowtown
 - Equivalent voltage source models are used to represent the fault contribution from rest of the network
 - Actual tower geometries are used to generate the frequency dependent transmission line model
 - Transformer saturation effect is considered in the design
 - BESS
 - Inverter (detailed model with IGBT switches)
 - Variable DC source as the BESS model
 - Auto grid forming and following transition
 - Distributed PV (average model)
 - Wattle Point WF
 - Type 1 wind farm
 - Two Statcoms
 - One 90MVA transformer
 - Reticulation network

PROTECTION STUDIES

- PowerFactory studies conducted for fault current calculations, protection
- Intention to ensure protection operation both in networked and islanded conditions
- During islanded condition, criterion used was to rely solely on fault current produced by BESS
- If less than 10 inverters (out of 12) online under islanded condition:
 - insufficient fault current capability; hence
 - BESS would activate anti-islanding facility detects an island

STUDIES – REGULATORY REQUIREMENTS

- BESS model developed both in PSSE and PSCAD
- Undertaking of PSSE simulations used for Generator Performance Standards (GPS) determination
- Due-diligence review by AEMO of simulations and assessment of proposed GPS
- Inverter based generating system fast reacting
- EMTP / PSCAD studies mandated by AEMO for grid-connected condition (including benchmarking between the PSSE / PSCAD models and comparative performance evaluation)
- PSCAD studies undertaken for islanded condition
- Transition between synchronous and isochronous condition modelled extensively

STUDIES – REGULATORY REQUIREMENTS

 Generator performance standard related tests Fault studies Frequency disturbance tests Voltage and Reactive power control Islanded: Transition Fault studies Compatibility with Windfarm studies Network event validation 	PSSE studies	PSCAD/EMTDC studies
	•	 Fault studies Frequency disturbance tests Voltage and Reactive power control Islanded: Transition Fault studies Compatibility with Windfarm studies

Dorin Costan - ElectraNet

"

"

TESTING

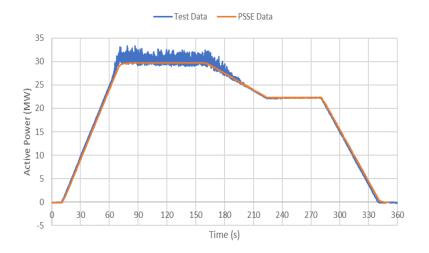
• Purpose:

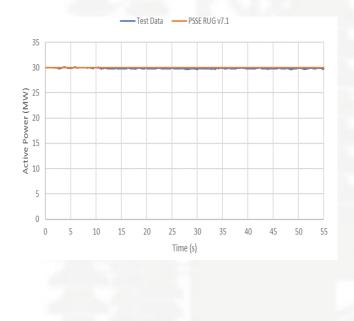
- Compliance testing generation licence
- Performance testing
- Compliance testing requirements defined in NER
 - Development of commissioning test plan + review / acceptance by AEMO
 - Undertaking of commissioning tests (R1 testing) progressively, at increasing import / export power levels
 - Reviewed / further tuned BESS parameters / model
 - Undertaking of model validation tests (R2 testing)

Performance testing

 the intent was to validate BESS performance requirements, as stipulated by ElectraNet

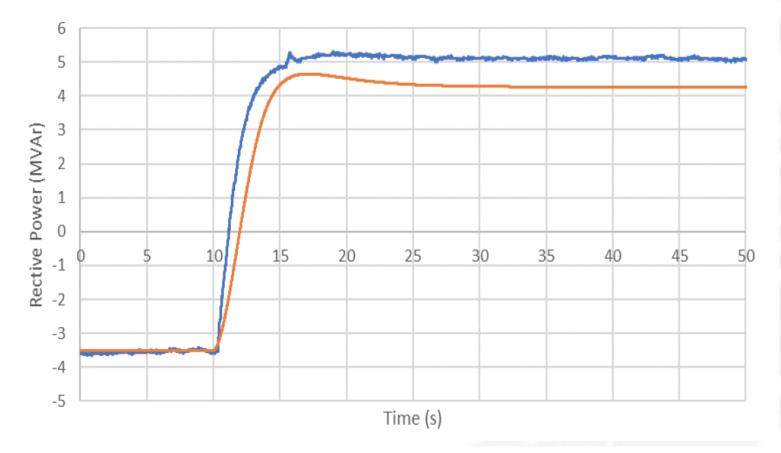
TESTING




- Commissioning tests
 - Hold-point 1 Test at +/-15 MW and +/-12.1 Mvar Grid connected operations only
 - Hold-point 2 Test at +/-30 MW and +/-12.1 Mvar Grid connected operations only
 - BESS Isolated Test simulated islanding, no load, no WF, powerflow inbetween inverters
 - BESS Partial Islanding (and re-synchronisation)
 - distribution load, no WF
 - WF, no distribution load
 - BESS Black Start with distribution load only (no WF participation, limits apply to WF transformer inrush current, POW, etc)
 - BESS islanding with WF and distribution load + re-synchronisation

R2 TESTING

- R2 testing offline and online tests
 - +5 % Voltage Step Response at +30 MW in voltage control mode
 - Previous oscillation at high discharge resolved
 - No change in MW output at voltage step



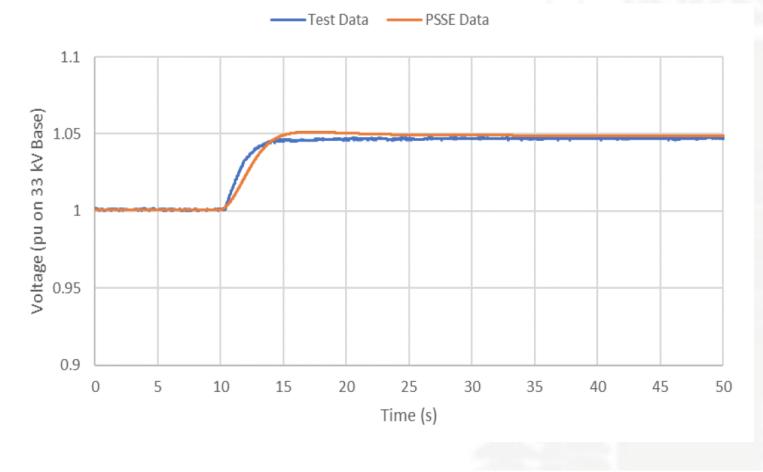
• Voltage step response – Reactive Power

— Test Data —— PSSE Data RUG v7.1

Dorin Costan - ElectraNet

11

...


Nie.

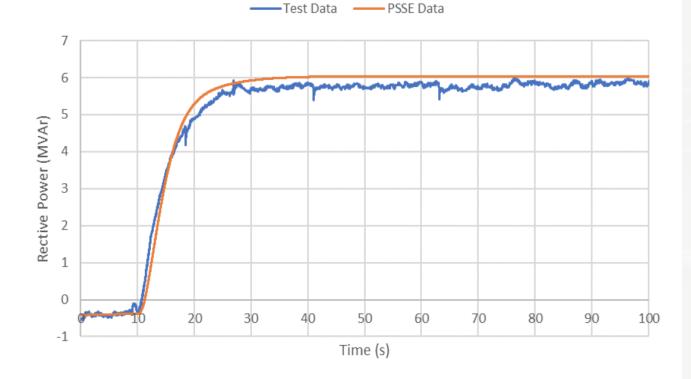
Slide number

• Voltage step response – Voltage

Dorin Costan - ElectraNet

"

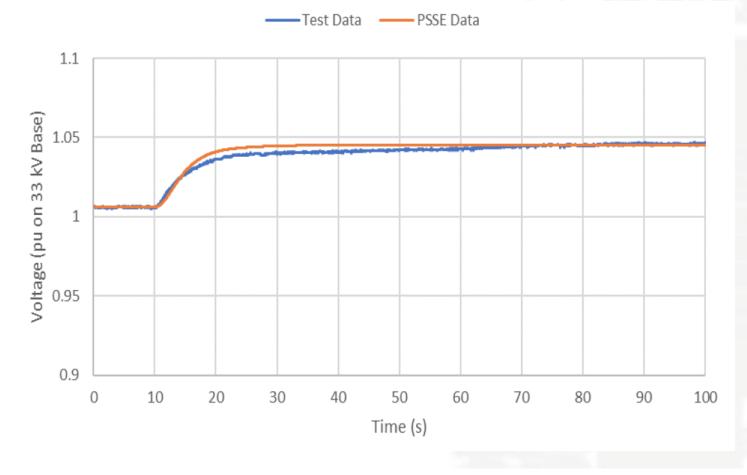
٩.,


...

Nie.

R2 TESTING

- R2 Test Model Response Overlay
 - +0.98 Power factor response in power factor control mode at 30 MW
 - No change in MW output observed

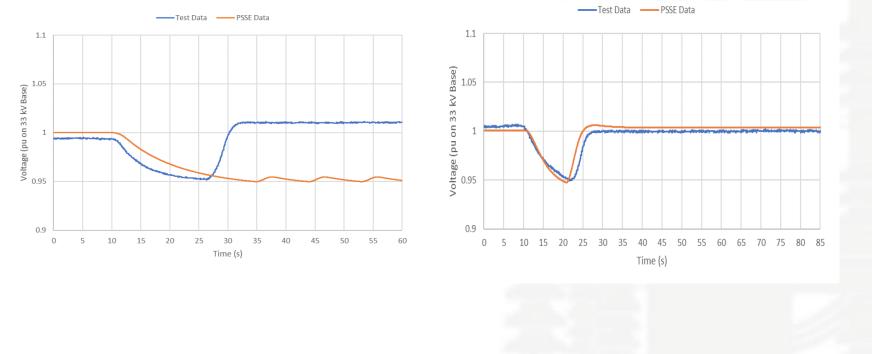

Dorin Costan - ElectraNet

"

• Power factor step response – Voltage

Dorin Costan - ElectraNet

"


.

Lup.

R2 TESTING

- Automated control change over
 - Forced PF to result in voltage excursion below 0.95 pu
 - As voltage drops below 0.95 pu, control mode switches to voltage control

BESS PERFORMANCE REQUIREMENTS

- Defined operational modes / assigned priorities
 - Unserved Energy / Islanded Operation: priority = 1 <> highest
 - Fast Frequency Response: priority = 2
 - Network Support: priority = 3
 - Contingency FCAS Raise / Lower Services: priority = 4
 - Cap Trading: priority = 5 ⇔ lowest
- Additional performance requirements
 - Fault Level Support in islanded operation
 - Voltage Control / Reactive Power
 - Fault Ride through capability for WPWF/Network Stabilisation Services

UNSERVED ENERGY (USE) - REQUIREMENTS 🚳 cigre

Desired outcome

- Disconnect upstream line (Dalrymple Ardrossan) and provide gridforming capabilities
 - Power injection into distribution network
 - Load following
 - Voltage and frequency control
 - Fault level support
- Performance Measurement
 - Power, voltage, frequency measurement at Connection Point
 - Seamless transitions between grid-connected and islanding operating modes
- Detection method / initiating signals
 - on-board or external (IDS, topology-based)
- BESS to provide sufficient fault current contribution for distribution protection system to operate correctly

Dorin Costan - ElectraNet

Slide number

FFR - REQUIREMENTS

- Desired outcome
 - BESS shall vary its output in response to a high rate of change of frequency to stabilise influence on power frequency.
- Performance Measurement
 - Power, voltage, frequency measurement at Connection Point
- Detection method / initiating signals
 - Internal e.g. local frequency or Phasor measurement; or
 - RoCoF measurements locally or at Connection Point
- Response time: responds nearly instantly (~30 ms), total response time dependant on the disturbance

NETWORK SUPPORT - REQUIREMENTS

- Desired outcome
 - provide BESS controlled charge or discharge in response to an external signal
- Performance Measurement
 - Power, voltage, frequency measurement at Connection Point
- Detection method / initiating signals
 - External signal e.g. from SIPS / WAMS
- Response time: less than 250 msec

FCAS RAISE / LOWER - REQUIREMENTS


- Desired outcome
 - provide active power injection or absorption to aid system frequency recovery following frequency disturbance
- Performance Measurement
 - Power, voltage, frequency measurement at Connection Point
- Detection method / initiating signals
 - SCADA signals
- Response time: configurable to meet grid requirements (6 sec, 60sec, 300sec).

CAP TRADING - REQUIREMENTS

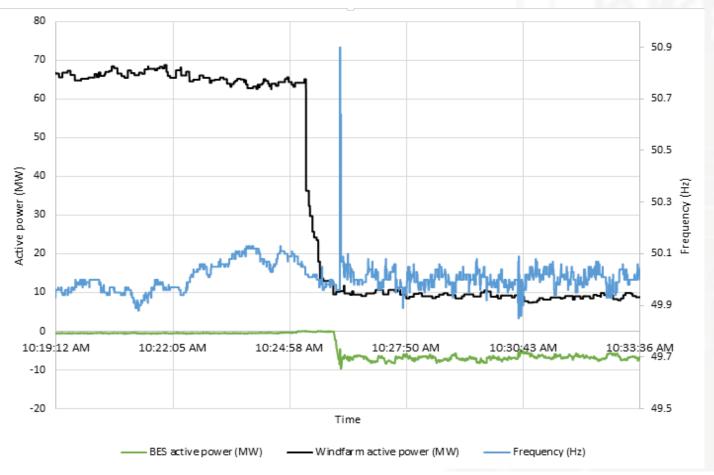
- Desired outcome
 - provide power injection into the network following a dispatch control signal
 - recharging activated via a dedicated control signal
- Performance Measurement
 - Power, voltage, frequency measurement at Connection Point
- Detection method / initiating signals
 - SCADA signals
- Response time: configurable to meet grid operator ramp rate requirements. Currently ~5sec

CAP TRADING - REQUIREMENTS

Substations 2019, Hobart, Tasmania 7 - 8 November 2019 Slide number

cigre

Dorin Costan - ElectraNet

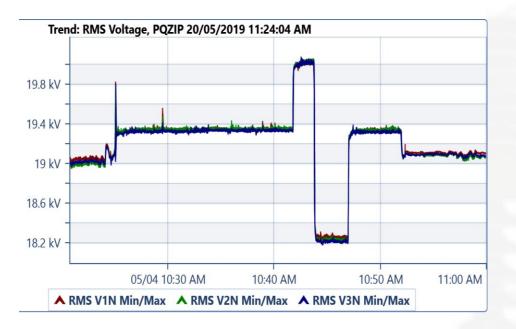

"

...

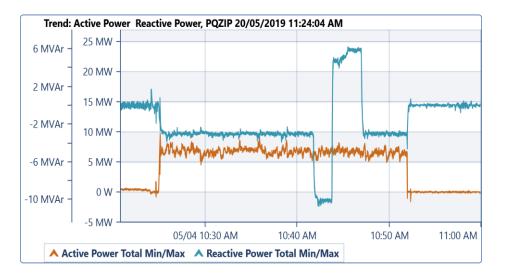
14

• Planned islanding test with WPWF and distribution load

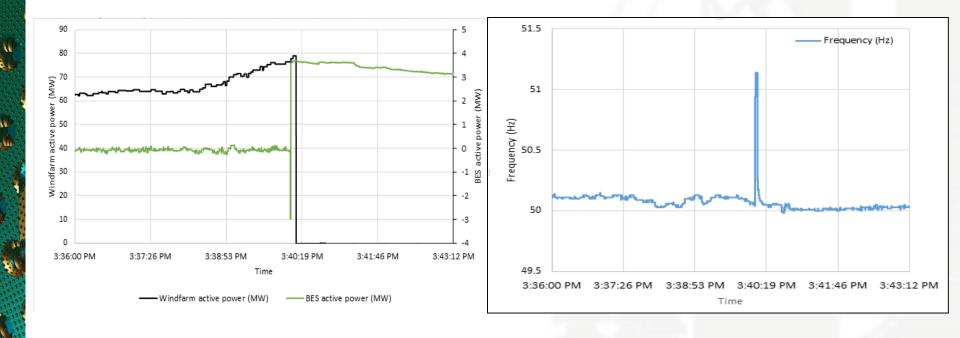
Dorin Costan - ElectraNet


1

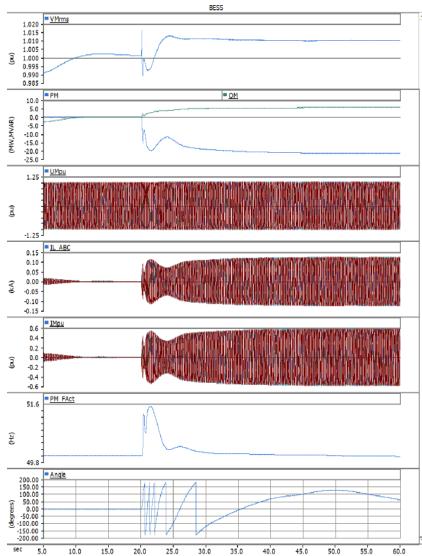
Slide number


- Voltage step change in islanded network change from:
 - 1 to 1.05 pu; and
 - 1 to 0.95 pu

"



- BESS active and reactive power with voltage step change
- Active and reactive power responses are completely decoupled



- Islanding test with WPWF output > 60 MW
- Successful unplanned island, but WF trips due to O/F

USE – PSCAD SIMULATIONS

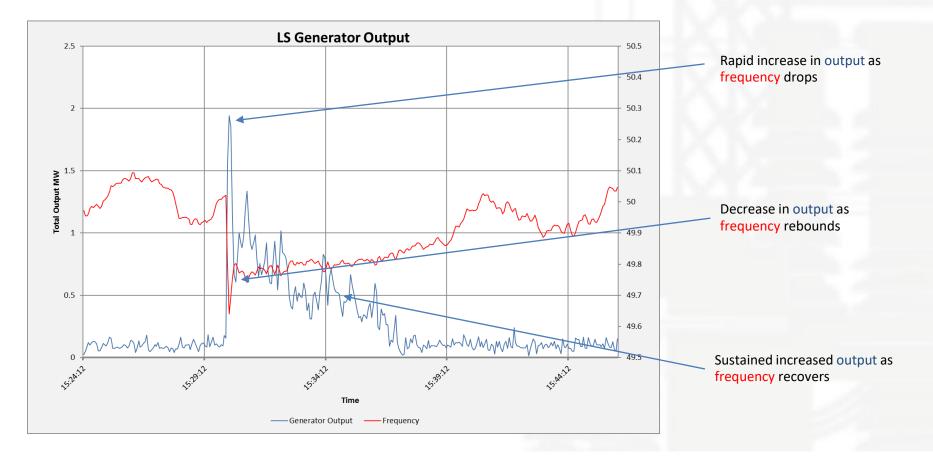
Dorin Costan - ElectraNet

"

"

2

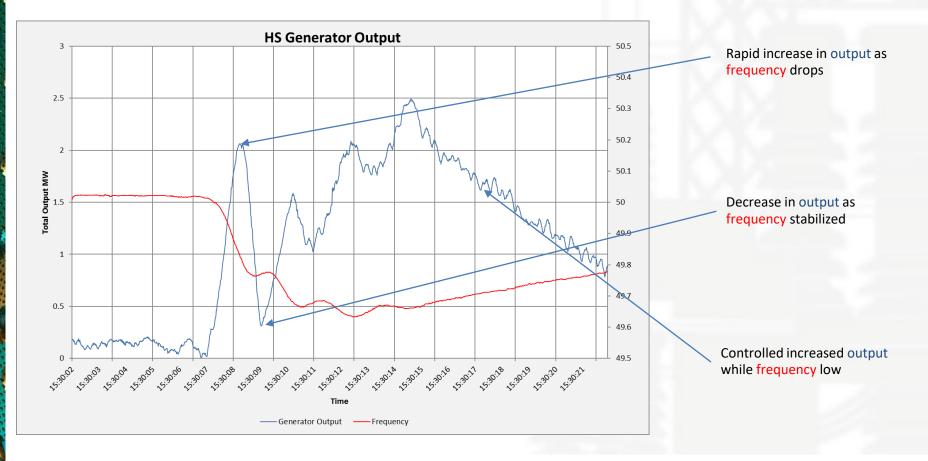
....


Mir.

- Generator tripped in NEM 25.12.2018
- This caused the mainland frequency to rapidly drop to 49.65Hz
- This network frequency drop was outside the bounds of normal frequency control, and triggered an FCAS event
- All registered FCAS units are expected to respond to such an event
- Time to react 30 msec

Low speed data (4 sec)

Dorin Costan - ElectraNet


"

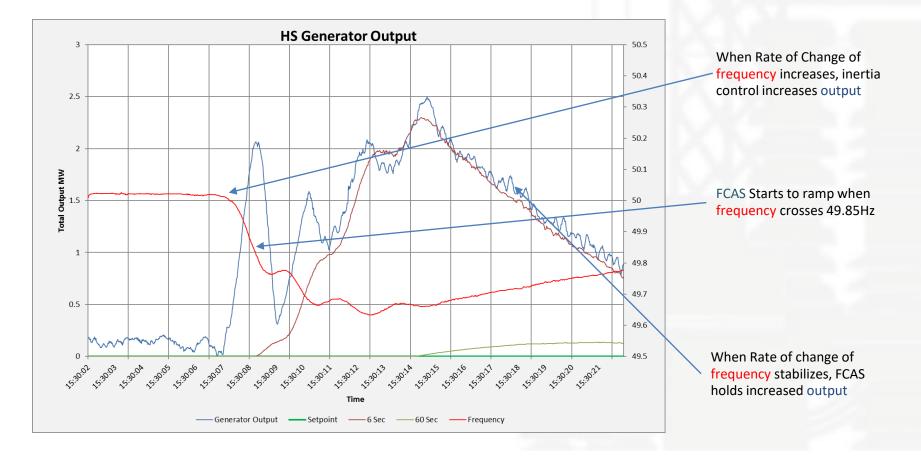
.

Mir.

High speed data (20 msec)

Dorin Costan - ElectraNet

1

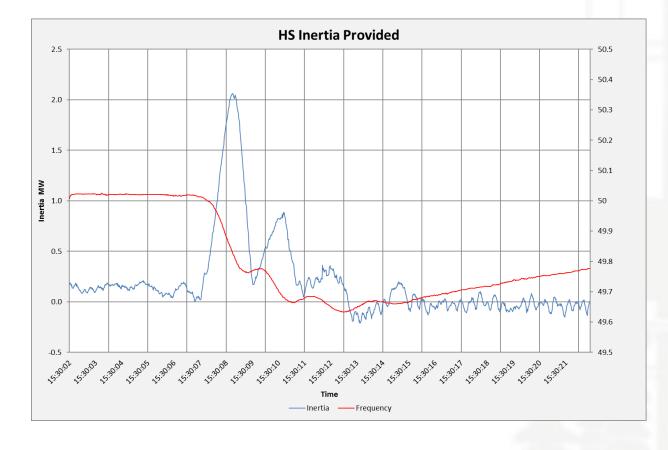

۱۱ فر ا

1

14

High speed data – predicted vs actual output

Dorin Costan - ElectraNet


11 8

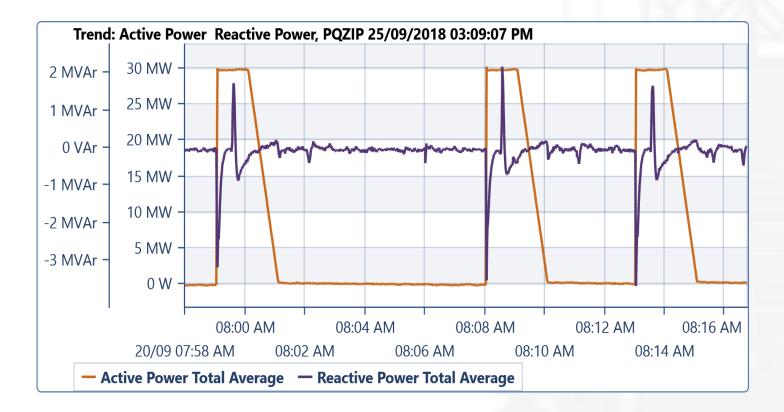
...

Ner-

• By removing predicted FCAS response, inertia response is:

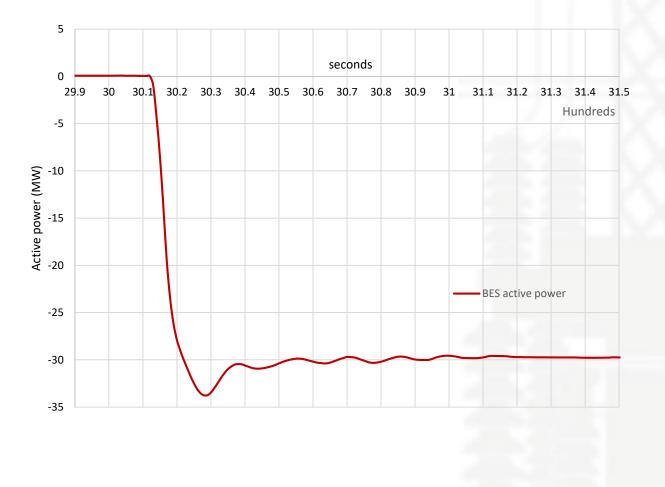
Dorin Costan - ElectraNet

*ا*د فرر


.....

- BESS integrated in SIPS scheme
- SIPS detects major generation loss by monitoring power swings
- Three stage response for SIPS after unstable power swing detected:
 - 1. Inject rapidly power into network use BESS (due to rapid response capabilities)
 - 2. Trip selected loads
 - 3. Initiate separation from NEM
- Functionality can be transferred to PMU-based WAMS / WAPS system
- Speed of response essential (when U/f protection systems not effective)

- SIPS scheme simulated loss of generation in SA network
- 30 msec telecommunication signal propagation delay (SIPS detection units installed approx. 400km away from BESS)
- BESS control system response time: 120 msec
- BESS ramp-up time: 100 msec
- Overall response time: approx. 250 msec
- Conclusion BESS Systems can inject power, assist network effectively following network events and may aid in preventing load-shedding and islanding / black-outs


Dorin Costan - ElectraNet

"

1

Lip.

cigre

Dorin Costan - ElectraNet

"

LL Lúp cigre

FAULT CURRENT (USE) - REQUIREMENTS

- Desired outcome
 - BESS shall provide sufficient fault current contribution for distribution protection system to operate correctly
- Performance Measurement
 - Current measurement at Connection Point
- Detection method / initiating signals
 - Voltage measurement at 33 kV bus
- Duration: capable for more than 2 sec

FAULT CURRENT (USE) - PERFORMANCE

- Detailed simulations using PSCAD by Electranix and ElectraNet have been conducted using the same parameters as those used in the hardware and island test
- These simulations have been successful in replicating the test results
- Results of the simulation have concluded that:
 - In full island mode a minimum of 10 (out of 12) BESS inverters are required to be in service in order to meet fault current requirements
 - WPWF O/F protection settings need to be adjusted
 - Transformer saturation needs to be properly considered for islanding studies

V/Q CONTROL - REQUIREMENTS

- Desired outcome
 - BESS shall dynamically generate or absorb reactive power to support the system voltage at Dalrymple in response to a control signal or set point
- Performance Measurement
 - Reactive Power, voltage measurement at Connection Point
- Detection method / initiating signals
 - SCADA signal; or
 - Voltage measurement at Connection Point
- Response time: less than 1 sec

FAULT RIDE-THROUGH - REQUIREMENTS

- Desired outcome
 - provide 'dynamic reactive support' to system voltage; and
 - dampen power system transients during and after a power system fault to assist the fault ride-through capability of WPWF
- Performance Measurement
 - Dynamic simulation
- Detection method / initiating signals
 - Voltage measurement at 132 kV bus
- Response time: has reactive power rise time, for a 5% voltage disturbance, of less than 2.4 seconds