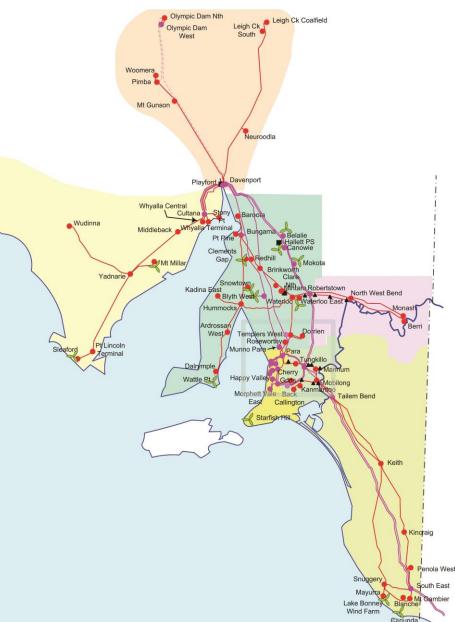
16 August 2017

South Australia's electricity transmission specialist

What is a grid-scale battery energy storage system (BESS) best used for in SA?

Electric Energy Society of Australia


Hugo Klingenberg Senior Manager Network Development

electranet.com.au

ElectraNet

About ElectraNet

- > Principal Transmission
 Network Service Provider
 (TNSP) for South Australia
- > Owns and manages the SA regulated high-voltage electricity transmission network, and operates in Australia's National Electricity Market (NEM)
- > 5,600 circuit kilometres of transmission line
- > Where is the Yorke Peninsula?

Outline

- > Context and background
- > What is grid-scale BESS best used for in the South Australian Electricity System?
 - Not energy security
 - But rather system security
- > Broad range of services & benefits (Market services, e.g. arbitrage or Caps, USE reduction, capital deferral, network support, etc.) with the business case being very application specific
- > ESCRI case study
- > Discussion / questions

South Australia renewable energy snapshot

SA has one of the highest interconnected system levels of intermittent renewable energy penetration in the world (about 41% of annual energy)

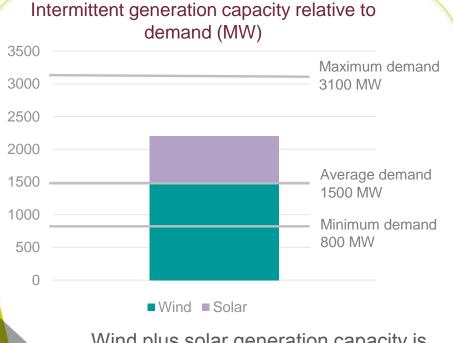
Maximum demand 3400 MW

Wind capacity 1500 MW

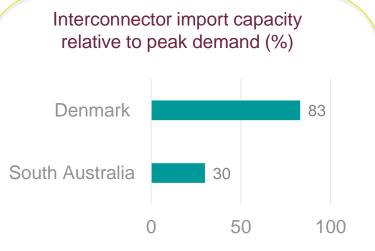
Average demand 1500 MW

Minimum demand 800 MW and decreasing

Rooftop solar capacity 700 MW



No coal fired generation


Renewable energy integration - intermittency

New challenges are emerging from the combination of high levels of intermittent generation and a relatively isolated and weakly interconnected system

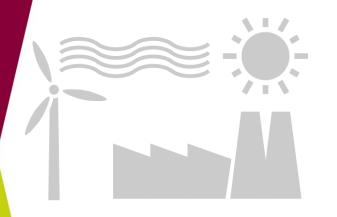
Wind plus solar generation capacity is...

- 145% of average demand
 - 275% of minimum demand

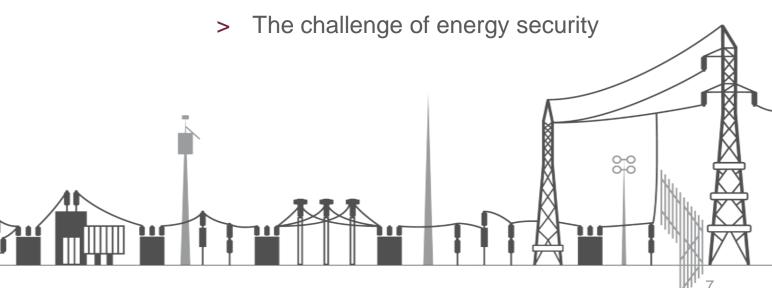
International experience shows that stronger interconnection is needed to support increasingly high levels of intermittent generation and to support energy transformation

System security implications - inertia

New measures are required to manage emerging system security challenges



Changes in South Australian system inertia


- In August 2016, AEMO reported growing SA exposure to high rate of change of frequency (RoCoF)
- > On 12 October, the SA Government introduced a 3 Hz/s RoCoF limit to protect against the non-credible loss of the Heywood Interconnector
 - the resulting Heywood Interconnector limit has bound about 20% of the time
- > Subsequently AEMO introduced new system strength measures for SA
- > AEMC Future Power System Security work program is underway, including a number of Rule change proposals

Aspects of an energy only market

- > Energy
 - Wholesale market
 - Cap trading and other instruments
- > Ancillary Services

Security Classification: Public

The challenge of intermittent generation

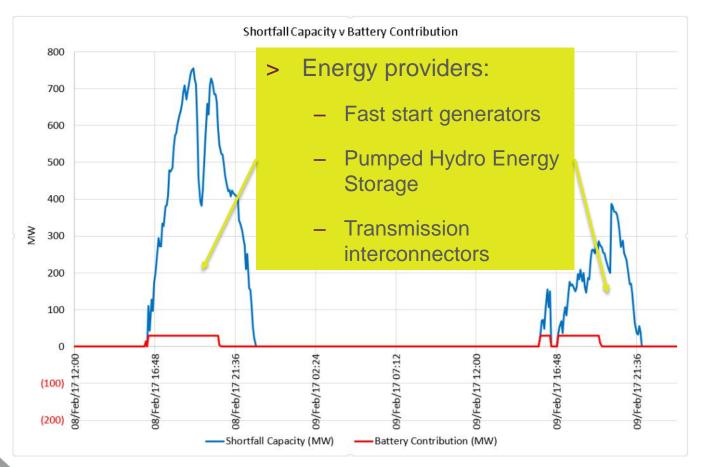
Wind and solar PV provide minimal support to SA for 15% of the time

Security Classification: Public

Batteries and energy security

Many batteries required to provide energy security

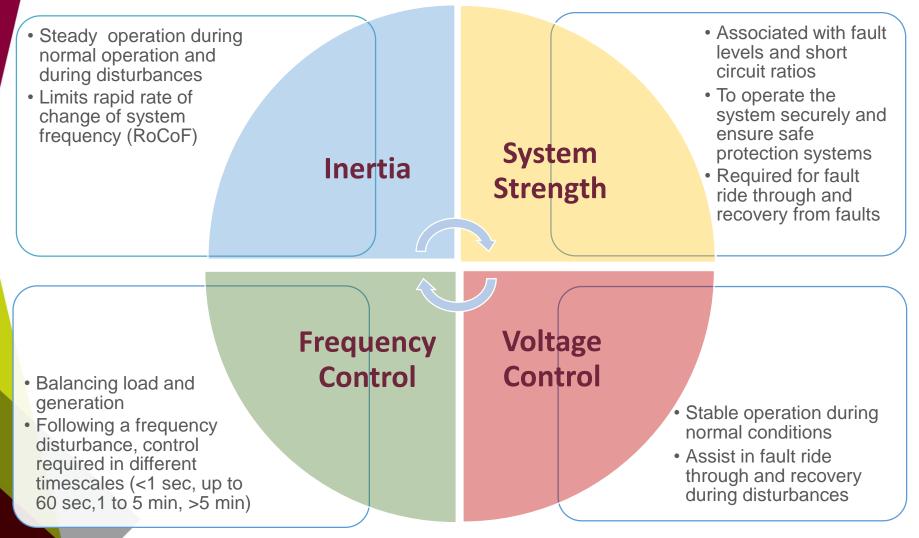
- > Assumptions:
 - Wind still night (12 hours)
 - Average state demand (1,500 MW)
 - Imports from Victoria at 650 MW
- > How many batteries do we need?


- Batteries charged at 50% at start
- SA Government battery 129 MWh
- Residential battery 10 kWh

Type of battery	Utility scale	Residential
Scenario 1	> 150	None
Scenario 2	> 80	500,000

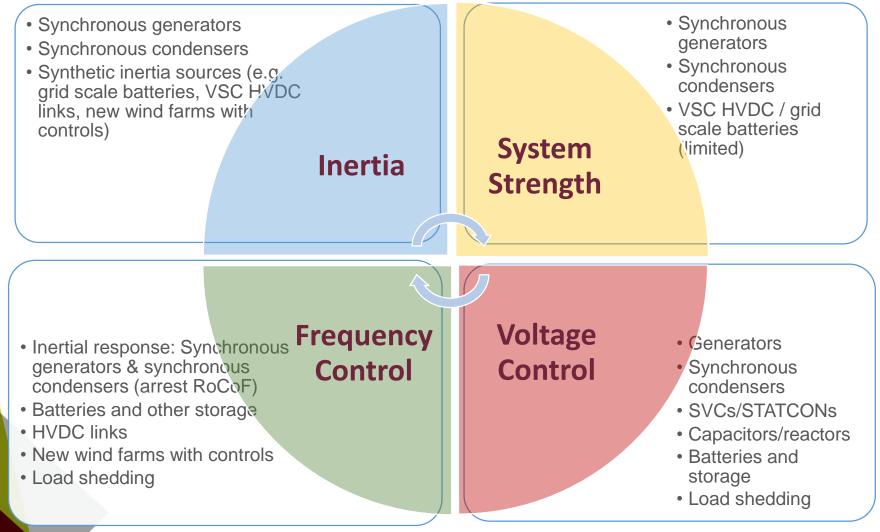
ElectraNet

Batteries and energy security

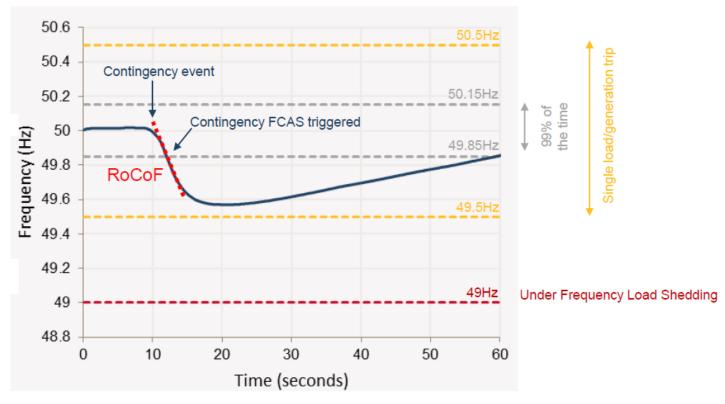

Batteries are limited in providing energy security, e.g. 8-9 Feb 2017

Source: AEC article by Duncan MacKinnon, 16 July 2017

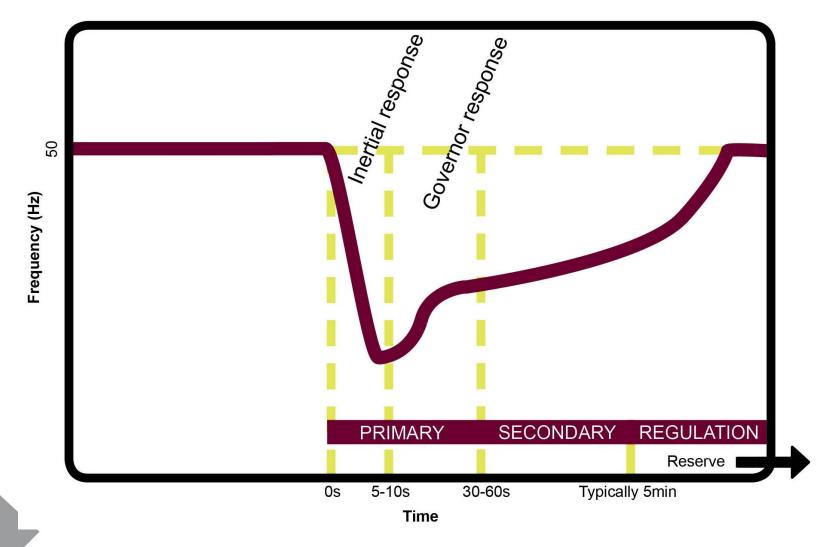
Ancillary services needs


Ancillary services required in an "energy only" market for a viable electricity system

ElectraNet

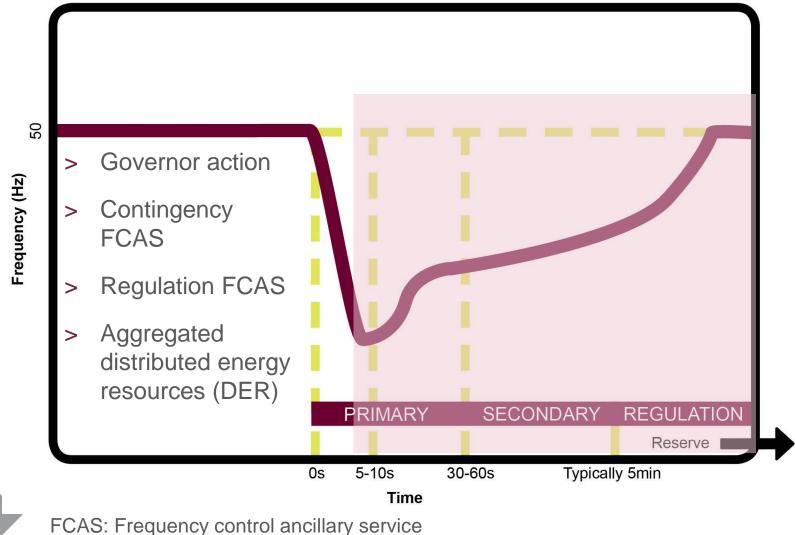

Ancillary services provided by?

Various technologies can participate in providing the range of required services


Rate of change of frequency (RoCoF)

- Following an unexpected loss of generation/ load the resulting imbalance of supply and demand causes system frequency to fall/ rise
- If RoCoF is too high it could result in cascading trips of load or generation and emergency control schemes may not prevent system collapse

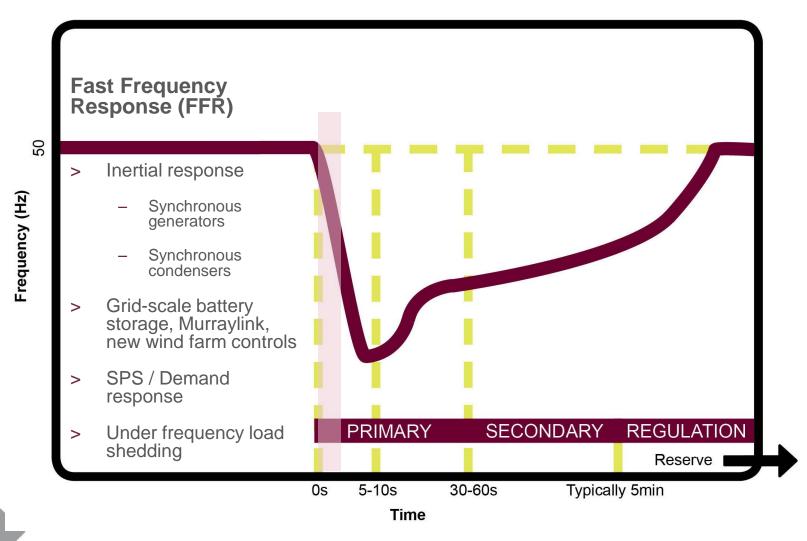
Frequency - separation event **ElectraNet**


Typical frequency response: Arresting, stabilisation and recovery

Stabilisation and recovery

ElectraNet

Existing arrangements (governor action and FCAS) can cater for most events



Security Classification: Public

Arresting frequency

A combination of inertia and FFR providers will be required in future

Alternative Inertia and FFR characteristics to meet minimum 3 Hz/s RoCoF standard

Trade-off between FFR MW and system inertia requirements for different FFR response times to meet minimum 3 Hz/s RoCoF requirement

	Example 1: 250 ms response	Example 2: Faster response	Example 3: Slower response	Example 4: Inertia only
FFR response Time (ms)	250	150	350	N/A
Inertia (MWs)	4,000 - 4,500	4,000 - 4,500	4,500 - 5,000	5,000 - 5,500
Inertia increase from example 1 (MWs)	N/A	0	500	1,000
FFR required (MW)	300 - 350	200 - 250	250 - 300	N/A
FFR reduction from example 1 (MW)	N/A	~100	~50	300 - 350

ESCRI case study

ElectraNet

ESCRI – Phase 1

- Energy Storage for Commercial Renewable Integration in South Australia
- > An Australian Renewable Energy Agency (ARENA) funded project that started out to investigate the business case for transmission grid-scale (5 – 30 MW) storage in South Australia

ElectraNet

ESCRI

Phase 1 – Business Case

- Regulatory environment
- Initial siting
- Functional specification
- Capital estimating
- Technology selection
- Commercial framework
- Market impact & value

Phase 2 – Project Delivery

- Statutory approvals
- Formal procurement
- Finance raising
- Detailed design
- Construction
- Commercial contracts
- Operation of asset

Phase 1 Basic Outcomes

Phase 1 – Business Case

- Regulatory environment
- Initial siting
- Functional specification
- Capital estimating
- Technology selection
- Commercial framework
- Market impact & value

No particular regulation impediment

Siting was an iterative task, considering multiple criteria. Screening methodology resulted in three sites initially

A mathematical model was built to assess the large arrange of options, and determine a functional algorithm to maximise revenue

A formal RFI was used with 42 national/international vendors responding – shortlisted to eight proponents. A wide range of technologies were assessed

Various commercial frameworks are possible TNSP owned most effective in this case

Business case was eventually assessed for a 10 MW, 20 MWh Lithium-Ion battery based at Dalrymple on the Yorke Peninsula

Project development history

ESCRI-SA Phase 1 – Business Case exploration

November 2014 to December 2015 Examined regulatory, commercial, technology and technical issues and publicly reported results – Business case for a 10 MW, 20 MWh BESS was poor

ESCRI-SA Phase 2 – Expression of Interest for delivery phase

March to July 2016 30 MW, 8 MWh BESS targeting demonstration of FFR but unable to monetise – Benefits included increased Heywood Interconnector import capability, reduced unserved energy, and market price cap trading. Business case improved

ESCRI-SA Phase 2 – Full Application for delivery phase

January to March 2017 Same 30MW, 8MWh BESS but with FFR system security benefit monetised (reducing Heywood Interconnector import constraints) and ancillary services revenue (FCAS) added. ARENA grant funding of up to \$12m

BESS – Battery Energy Storage System

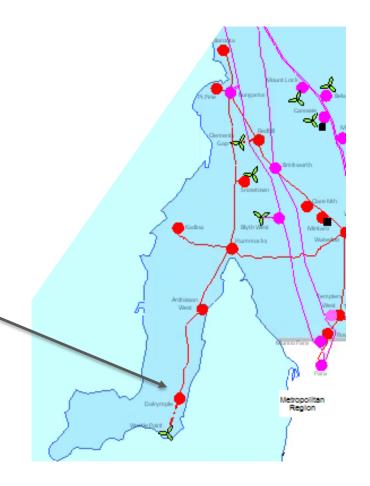
Security Classification: Public

Project scope and objectives

Scope: Nominal 30 MW, 8 MWh proof of concept battery storage project Primary objective:

> Demonstrate that utility scale energy storage can be a key enabler of large scale intermittent renewable energy on an interconnected system, through the provision of FFR services alongside other parallel network and market services

Secondary objectives:


- > Explore islanded operation with 100% renewable generation
- > Build delivery capability for such assets
- Demonstrate commercial separation and provision of regulated services and energy market services

Why Dalrymple?

Site selected to maximise value and minimise ARENA ask

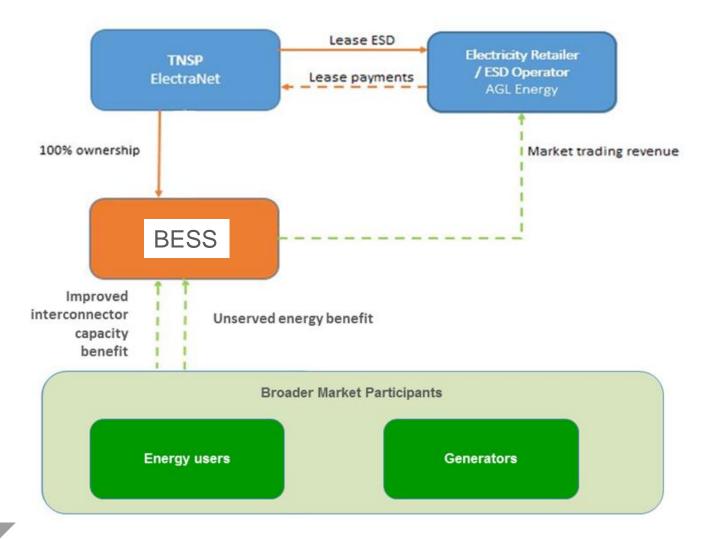
- Transmission level connection at 33 kV at Dalrymple substation on Yorke Peninsula
 – land available
- Has an opportunity to reduce Expected Unserved Energy under islanding conditions, with a maximum load of around 8 MW (more typically about 3 MW for 2 hours)
- The site is close to the 91 MW Wattle Point Wind Farm – and provides opportunity for the battery to support islanded operation with the wind farm and 2 MW of local rooftop solar, following outages of the 132 kV network

Potential BESS services

Component	Service / Benefit	BESS	Comment	
Energy	Cap trading	\checkmark	Long term energy: Fast start GTs, gas, PHES, DER, wind, PV,	
	Energy time shifting	\checkmark		
	Energy security			
Network reliability / support	USE reduction	\checkmark	coal, diesels, transmission	
	Capital deferral	\checkmark		
	Voltage & reactive control	\checkmark		
Frequency control	Short term spinning reserve	\checkmark		
	FCAS	\checkmark	Aggregated DER	
	Fast Frequency Response	\checkmark	SPS, UFLS	
Safety	Fault level		Synchronous condensers	
	Black start	\checkmark	26	

Revenue streams

Battery will be leased to AGL to capture competitive market services


Regulated services	Competitive market services
Fast frequency response Heywood Interconnector benefit	Ancillary services revenue (FCAS)
Reduced unserved energy benefit	Market cap trading

Fast frequency response benefit arises from reducing Heywood Interconnector constraints that limit imports over the interconnector to manage high rates of change of frequency (the 3 Hz/s Rate of Change of Frequency (RoCoF) limit)

ElectraNet

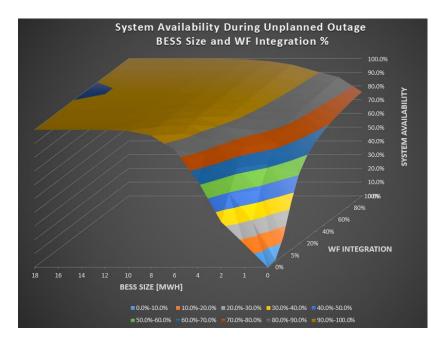
Commercial construct

Proposal complies with relevant regulatory rules and guidelines

ElectraNet

ESCRI status update

- > ARENA grant funding of up to \$12m
- > Re-engaged identified proponents via RFP & RFT
- > Refined financial model and progressed internal approvals
- > Engaged AGL:
 - BESS operating protocol (AGL to have operational control)
 - Lease payments, varied according to different MWh offerings
 - Various agreements
- > EPC contract award shortly
- > Energisation early 2018


Protecting regulated services

AGL / ElectraNet operating protocol to be setup to protect the regulated services Initial approach:

- > BESS mostly fully charged
- > Once AGL has used the BESS, recharge within a few hours

Revised approach:

- > With wind farm integrated:
 - > BESS charge to remain within 10% and 90%
 - Allows AGL more flexibility, also FCAS lower opportunity
 - > Improved BESS longevity
- Without wind farm integrated,
 BESS charge to remain above 60%

ElectraNet

Thank you

Hugo Klingenberg

Phone: +61 8 8404 7991

Email: klingenberg.hugo@electranet.com.au